Astrophotography Basics

Elizabeth Warner
UM Observatory
University of Maryland
warnerem@astro.umd.edu

Basic Techniques

- Non-Tracking
 - Handheld
 - Tripod
 - Widefield
 - Time lapse
 - Afocal
- Tracking (Polar-aligned!)
 - Barn-door
 - Piggyback
 - Through the scope
 - Afocal
 - Prime focus
 - Projection

Handheld

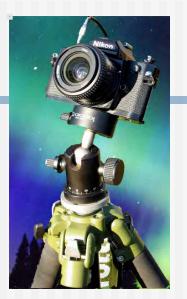
- Any camera!
- Usually sun/moon rise/set pictures

Safely observing the sun through a solar filter. The little white disk is the sun!

Moonrise and colorful clouds.

Elizabeth Warne

Tripod


- Any camera with a "bulb" setting or capability of taking exposures >1sec (and up to 30 or more sec)
- Tripod or other method of steadying the camera
- Shutter-release cable
- Star trails, meteor showers, aurorae, satellites, conjunctions, some eclipses, star parties, ...

Left: foreground trees are lit by house lights

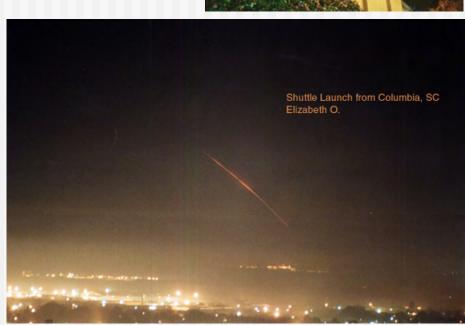
Right: Friends setting up their telescope

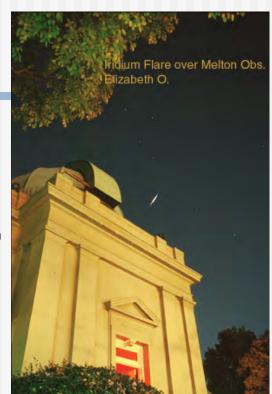
Scorpio Star Trails

© Flizabeth Warne

© Elizabeth Warne

Tripod




Top right: IR Flare
Bottom right: shuttle launch
Bottom left: conjunction

Top left: meteor

Tripod

Aurora!

date: 24 November 2001,

approx. 5:20am MST

location: Warner/Pines Cabin,

Westcliffe, CO

setup: Canon EOS D30

film: none, digital

exposure: 10 @ 15sec each

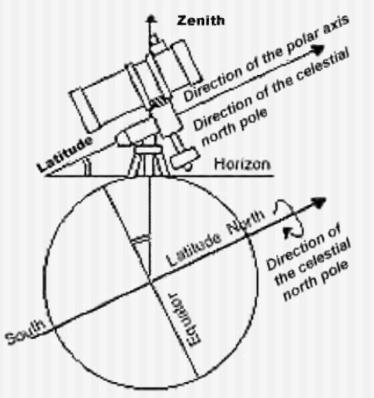
about 30sec apart

comments: used Adobe

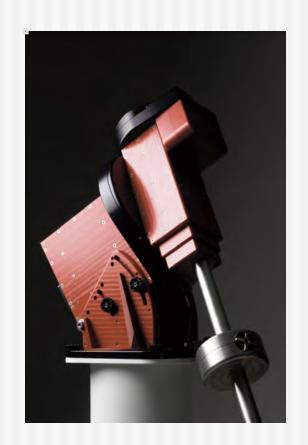
Photoshop 6 and ImageReady 3.0; note the head of Draco

rising!

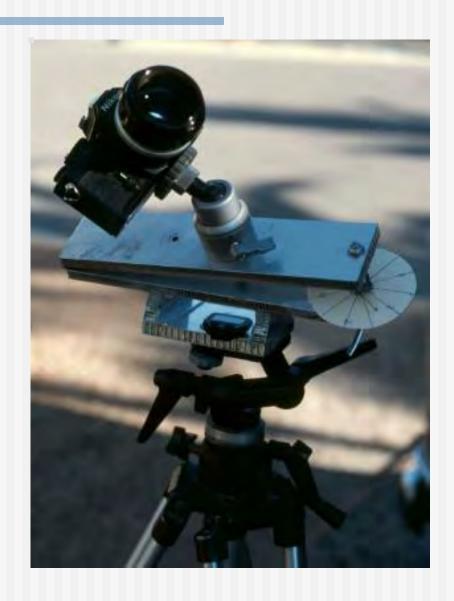
www.astro.umd.edu/~warnerem/Gallery/aurora/Aurorae.shtml


Time-lapse over the Subaru Telescope on Mauna Kea (not sure where I got it, I've been searching, but could only find some similar ones http://www.youtube.com/watch?v=nMi1nVDSRXQ, http://www.flickr.com/photos/sebastian egner/4146134355/)

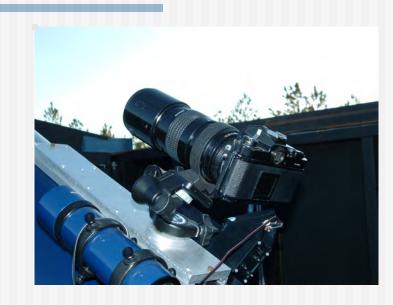
Tripod - Afocal


Tracking - Polar alignment

German Equatorial


Fork

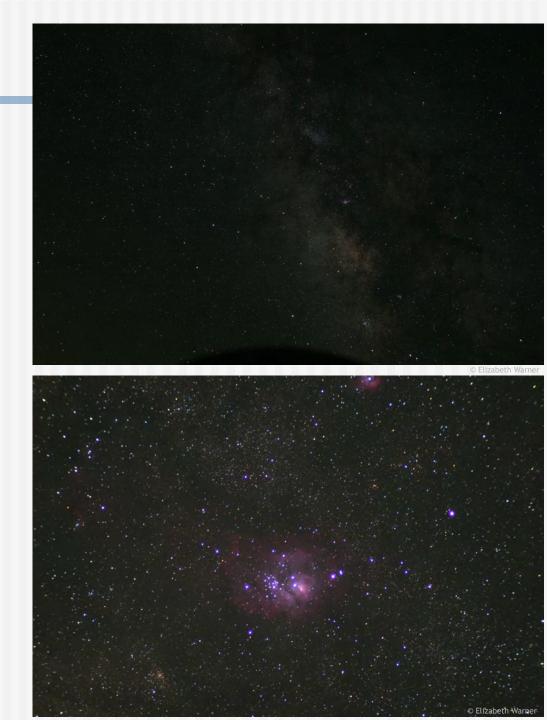
Barn Door Tracker


- Any camera with a "bulb" setting
- Shutter-release cable
- Home-made contraption
- tripod
- Like piggybacking
- Wide-angle constellation shots, comets

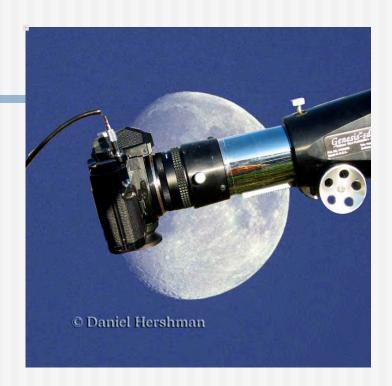
Piggyback

- Any camera with a "bulb" setting
- Shutter-release cable
- Tracking telescope, piggyback mount
- Wide-angle constellation shots, comets

© Elizabeth Warne


Piggyback

© Flizabeth Warner



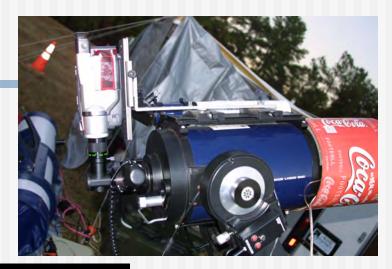
© Elizabeth Warner

Prime-focus

- Any camera with a "bulb" setting and removable lens
- Shutter-release cable
- T-ring, t-adapter, other adapters
- Tracking telescope
- Telescope becomes the lens
- Close-up on moon, planets, other solar system stuff, deepsky

Prime-focus

Auto-guiding



Afocal

- Usually point and shoot or small camcorders
- Either lots of stills to stack or movies
- Some kind of adapter to hold camera/camcorder over eyepiece
- Subject matter can be almost anything although moon and planets are the typical targets

Afocal



Projection

- Any camera with a "bulb" setting and removable lens
- Shutter-release cable
- T-ring, t-adapter, other adapters
- Tracking telescope, eyepieces, guiding mechanism
- Close-up on moon, planets, other solar system stuff, deepsky

Projection

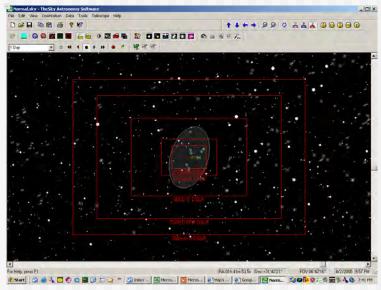
Film vs. digital (SLR, ccd, webcam)

- ·Higher-res
- B&W or color
- Have to wait and see results
- (cameras) More durable, many are totally manual (power requirements!)
- Have to scan if you want to digitally manipulate (have processor scan to CD when you have film developed)
- Are a pain to focus!
- Don't lose the negatives or slides!

- Some CMOS and CCD cameras have surpassed film!
- Dedicated astro CCD cameras are usually monochrome (would need to use filters to make color images; interesting opportunities with narrowband filters!). CMOS (DSLRS) are color and some new 1-shot color CCD cameras available.
- Immediate satisfaction
- Need dependable power source especially in cold weather
- Already digital
- Are a pain to focus!
- Don't lose the original digital files!

Multiple short exposures

- Total exposure time (1 long = many short) *
- Short exposures = less noise
- Short exposures = less star blooming *
- Short exposures require less precise tracking
- Many exposures = less likely to have shoot destroyed by satellite, airplane, car headlights, etc.
- Many exposures increase S/N ratio
- Requires careful alignment translation, stretching (refraction)
- * Assumes proper processing


Processing Workflow

- Convert RAW frames to TIFFs or FITS files (either color or mono Bayer color data)
- Calibrate files with bias, dark, and flat frames
- Grade and cull calibrated frames
- Align usable calibrated frames
- Stack frames (various algorithms)
- Digital Development (histogram stretching)
- Color balance
- Image enhancement
- Noise reduction
- Cropping and conversion to final presentation format

Composition!

- Be aware of current sky events!
- Plan your images with planetarium software.
 - iPad: The Photographers' Ephemeris (also on computers)
 - iPad: Lighttrac
- Use the right lens and doublecheck the settings!
- Bracket the exposures.
- Take multiple exposures (for stacking) and your calibration frames!

Misc tricks...

- With film, take 'normal' shots every couple of frames (so developer knows where to cut/scan film) or request that they do not cut the film
- Keep a log!!!
- Have spare batteries
- Don't fidget! At least not right next to your setup!

Possible problems

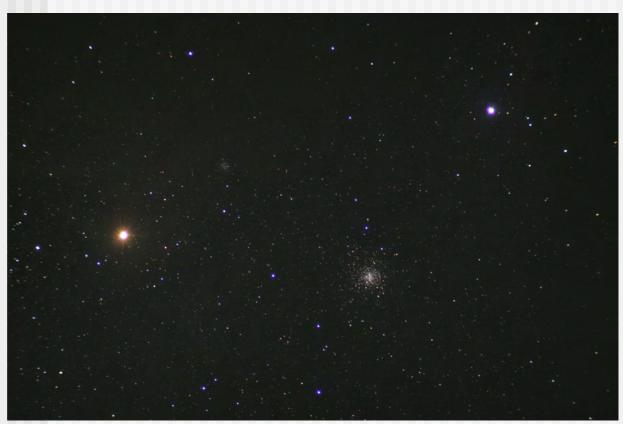
- Equipment issues
 - Focusing
 - Vignetting
 - Tracking
 - Stability
 - power

- Other issues
 - Light pollution (reciprocity failure)
 - Humidity
 - Bugs
 - Operator errors

Even on easy targets like the moon, focusing can be difficult!

This one's a bit soft in the focus and it looks like it also got kicked during the exposure.

Focusing is always the hardest, particularly with planets. Seeing (steadiness of atmosphere) is a big factor – observing is a better idea on windy nights!


Star Trails are nice if you have a constellation shot, but not if you are trying for a deepsky object! Shot of Orion's sword (the fuzzy stars are M42).

Alignment, tracking, kicking the tripod – who knows? But it's not pretty! M42

Close. Always bracket and take lots of shots. It helped that I 'hid' the monument behind the trees, but the exposure was still too short to capture the planets off to the right.

3 tries and still not quite good enough. This one's still cool though – it's from a digital camera!

3 images

- -- longer exposure but trails (5 min)
- -- shorter exposure, kicked (2 min)
- -- shorter exposure, close (2 min)

Antares & M4 23 June 2006

Rocky Mtn Star Stare, CO

Canon EOS 20Da pf through Orion Shorttube 80 piggybacked on Meade 10" LX200

Success!

Success!

Success!

Lightning over Tucson, APOD 18 Aug 2004

Comet McNaught

My balcony in Alexandria, VA

File Name: IMG_6570.CR2

Camera Model: Canon EOS 20D

Shooting Date/Time: 1/8/2007 5:46:19 PM

Shooting Mode: Manual Exposure

Tv (Shutter Speed): 1/20

ISO Speed: 400

Image Size: 3504x2336 Image Quality: RAW

White Balance Mode: Auto AF Mode: Manual focusing

Color Space: sRGB **Noise Reduction:** Off

Left: converted to jpg, then processed in Photoshop – unsharp mask, brightness/contrast enhanced

Right: raw converted to jpg

Moon & Venus

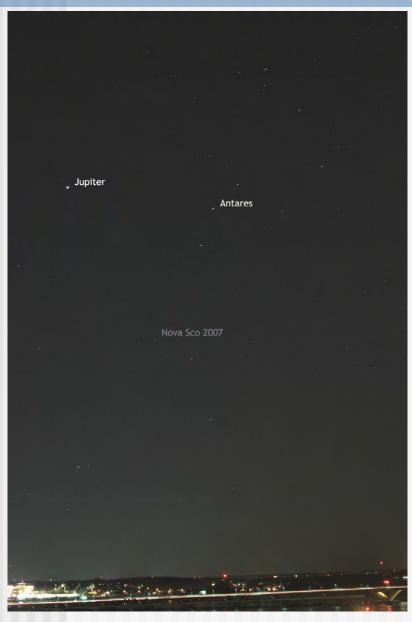
File Name: IMG_6774.CR2 Camera Model: Canon EOS 20D

Shooting Date/Time: 1/20/2007 6:16:01 PM

Shooting Mode: Manual Exposure

Tv (Shutter Speed): 1.3 Av (Aperture Value): 5.6

Metering Mode: Evaluative Metering


ISO Speed: 400 Lens: 28.0 - 135.0mm Focal Length: 135.0mm Image Quality: RAW

Flash: Off

White Balance Mode: Auto AF Mode: Manual focusing

Color Space: sRGB **Noise Reduction:** Off

Nova Sco

Shooting Date/Time: 2/19/2007 5:18:44 AM

Tv (Shutter Speed): 15 Av (Aperture Value): 5.6

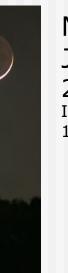
ISO Speed: 400

Lunar Eclipse

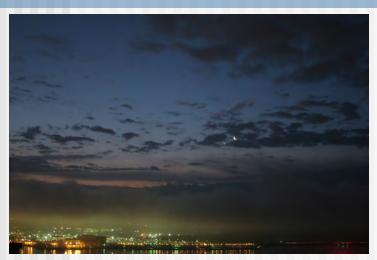

Shooting Date/Time: 3/3/2007 7:03:36 PM

Tv (Shutter Speed): 5
Av (Aperture Value): 0.0

ISO Speed: 400


"Although not spectacular like McNaught, Holmes has its own unique charms! I stayed most of the night at the campus observatory to get these pics and have to be back at work shortly. But it was well worth it!" Details: Canon 20Da ISO 800, 152mm f/9 refractor, 2x30s shots about 75 minutes apart (12:27, 01:43 EDT)

Moon, (Mars), Jupiter, Mercury 2009 Feb 23 ISO 1600 1/30sec f/5.6 135mm



Moon & Mercury 2008 May 6

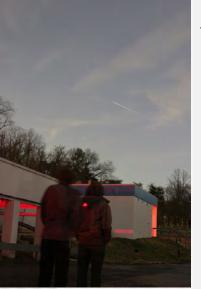
Right: 1.6sec f/5 400mm Top: 2.5sec f/5.6 72mm

[Similar alignment tonight??!!]

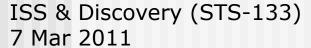
Can you tell I like conjunctions??

Moon & Venus 2009 Apr 22

2009 Apr 25


2009 Sep 19

2010 Jan 23



Top: 39 sec Left: 19 sec

All: Canon 20Da f/5.6 ISO 1600 28-135mm @ 28mm

Top: 31 sec Middle: 4 sec Right: 28 sec

ISS 8 Mar 2011

Local AstroImagers

John Settle mywebpages.comcast.net/jjs-cts/

Greg Piepol

www.sungazer.net/

Jeff Forsyth

www.TeamForsyth.com/

Steve Robinson

www.highenergyastro.homestead.com/

Guy Brandenburg

home.earthlink.net/~gfbranden/GFB Home Page.html

Doug Healy

www.dougsimages.com/

Elizabeth Warner

www.astro.umd.edu/~warnerem/

Fred Espenak

www.mreclipse.com/MrEclipse.html

Geoff Chester

jeffhotep.home.comcast.net/astro/index.html

Harold Geller

myslooh.com/hgeller

Tom Kennedy

www.tomkennedy.org/Astronomy.htm

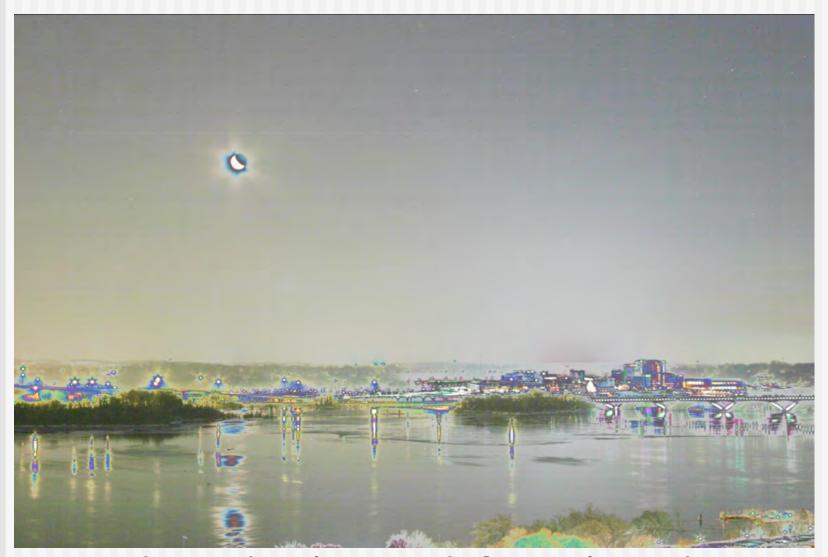
Other AstroImagers

Jerry Lodriguss www.astropix.com/ Robert Gendler www.robgendlerastropics.com/ Chris Cook www.abmedia.com/astro/ Russell Croman www.rc-astro.com/ Jason Ware www.galaxyphoto.com/ Chuck Vaughn astrophotography.aa6q.org/ Matt BenDaniel starmatt.com/ António Cidadão www.astrosurf.com/cidadao/ Bill & Sally Fletcher www.scienceandart.com/ Tony & Daphne Hallas www.astrophoto.com/

Wallis & Provin

geogdata.csun.edu/~voltaire/wallis provin.html

MAC


midlandsastronomyclub.org/gallery/gallery.shtml

Digital Astro

digitalastro.skyinsight.net/gallery/

Sky & Telescope

www.skyandtelescope.com/howto/astrophotography

2010 Feb 08 Shuttle Launch from Alexandria, VA! ISO 100, 26sec, f/8, 44mm (28-135mm)

Elizabeth Warne